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RyanUrbanowicas a postdoctoral research associate at the
University of Pennsylvania the Pearlman School of Medicine.
He completed a Bachelors and Masters degree in Biological
Engineering at Cornell University (2004 & 2005) aRth.®in
Genetics at Dartmouth College (2012). His research focuses
the methodological development and application of learning
classifier systems to complex, heterogeneous problems in
bioinformatics, genetics, and epidemiology.

Will Browneis anAssociate Professait the Victoria University
of Wellington He completed a Bachelors of Mechanical
Engineering at the University of Bath, a Masters BndDfrom
Cardiff, postdoc. Leicester ankkcturer in Cybernetics at
Reading, UKHis research focuses on applied cognitive ,
systems. Specifically how to use inspiration from natural )
intelligence to enable computers/ machines/ robots to behave@g A
usefully. This includes cognitive robotics, learning classifier #%="
systems, and modern heuristics for industrial application. i
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Course Agenda

x Introduction (What and Why?)

X
X
X

LCS Applications
Distinguishing Features of an LCS
Historical Perspective

x  Driving Mechanisms

X
X

Discovery
Learning

x LCS Algorithm Walknhrough (How?)

X

X X X X X X X

Rule Population

Set Formation

Covering

Prediction/Action Selection

Parameter Updates/Credit Assignment
Subsumption

Genetic Algorithm

Deletion

x Michigan vs. Pittsburghtyle
x Advanced Topics
x Resources




Rule Based Machine Learning (RBML)

What types of algorithms fall under this label?

x Learning Classifier Systems (LCS)*
x  Michiganstyle LCS
x  Pittsburghstyle LCS

x  Association Rule Mining

x Related Algorithms
x Artificial Immune Systems

RuleBasedc The solution/model/output is collectively comprised of individual
rules typically of the form (IF: THEN).

Machine Learning; a !subfield of computer science that evolved from the study of
pattern recognition and computational learning theory in artificial intelligence.
Explares the construction and study of algorithms that can learn from and make
LINSRA OU A 2gMakipedi@ R 0 | ®€

Keep in mind that machine learning algorithms exist across a continuum.
x Hybrid Systems
x Conceptual overlaps in addressing different types of problem domains.

* LCS algorithms are the focus of this tutorial. 5



Learning Classifier Systems (LCS)

x  Developed primarily for modeling, sequential decision making, classification, and prediction in
complex adaptive system

x IF:THEN rules link independent variable states to dependent variable states..e\g, ¥} A
Class/Action

Association Rule Mining (ARM)
x Developed primarily for discovering interesting relations between variables in large datasets.
x IF:THEN rules link independent variable(s) to some other independent vagabhl®/;, \,, i} A V,

Artificial Immune Systems (AIS)
x Developed primarily for anomaly detection (i.e. differentiating between self vssekb}t
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based on an affinity threshold.
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x In each case, the solution or output is determined piécé&
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This tutorial will focus on LCS algorithms, and approach them initially from a supervis
learning perspective (for simplicity).
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Adaptive ¢ Accommodate a changing environment. Relevant parts of solution can
evolve/update to accommodate changes in problem space.

Model Freeg Limited assumptions about the environment*
x Can accommodate complexpistatic heterogeneous or distributed underlying patterns.
x No assumptions about the number of predictive vs. qpoedictive attributes (feature selection).

Ensemble Learndmnofflual)c No single model is applied to a given instance to yield a
LINERAOUAZ2Y ® LyauSFR | aSd 2F NBft STl yi

Stochastic Learneg Non-deterministic learning is advantageous in laggpale or high
complexity problems, where deterministic learning becomes intractable.

Multi-objective (Implicitly)¢ Rules evolved towards accuracy and generality/simplicity.

Interpretable (Data Mining/Knowledge DiscoveryPepending on rule representation,
individual rules are logical and human readable IF: THEN statements. Strategies hav
been proposed for global knowledge discovery over the rule population solution [23].

OSYODBANRYYSY(IQ NBEFSNBR (2 0KS a:+



x QOther Advantages

x  Applicable to singlstep or multistep problems.

x Representation Flexibility: Can accommodate discogteontinuousvalued
endpoints* andattributes (i.e. Dependent or Independent Varial)les

x Can learn in clean or very noisy problem environments.

x Accommodates missing data (.e. missing attribute values within training
Instances).

x Classifies binary or multlass discrete endpoints (classification).

x Can accommodate balanced or imbalanced datasets (classification).

*2S dzaS UKS USNY O0SYRLRZAyUWLaQ G2 asy



x  LCS AlgorithmgDne concept, many
components, infinite combinations.

X

X X X X X X X

Rule Representations

\‘
Learning Strategy ‘ ‘
Discovery Mechanisms > & ‘ \\
=9

Selection Mechanisms %
Prediction Strategy
Fitness Function ‘

Supplemental Heuristics

¢

x Many Application Domains
Cognitive Modeling

Complex Adaptive Systems
Reinforcement Learning
Supervised Learning
Unsupervised Learning (rare)
Metaheuristics

Data Mining

X

X X X X X X X X

*Slide adapted fronLanziTutorial: GECCO 2014 J



x Classification / Data Mining Problems:
(Label prediction)

x Find a compact set of rules that classify
all problem instances with maximal
accuracy.

x Reinforcement Learning Problems &
Sequential DecisioMaking

x Find an optimal behavioral policy
represented by a compact set of rules.

xFunction Approximation Problems &
Regression(Numerical predictioh

xFind an accurate function approximation
represented by a partially overlapping
set of approximation rules.

10
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X
X

X
X
X

Dynamic environments

Perpetually novel events accompanied by large amounts of noisy
or irrelevant data.

Continual, often reatime, requirements for actions.
Implicitly or inexactly defined goals.

Sparcepayoff or reinforcement obtainable only through long
action sequencefBooker 89.

x I YR 0K2aS GKFO KIF@SX

X X X X X X X

High Dimensionality

Noise

Multiple Classes

Epistasis

Heterogeneity

Hierarchical dependencies

Unknown underlying complexity or dynamics

11



Search _ , .
Medical Diagnosis Optimisation

Modelling Scheduling
- Design Prediction
Routing KnowledgeHandling
Visualisation Feature Selection _
Querying
Adaptivecontrol

Image classification

Navigation
Gameplaying

Rulelnduction Datamining

12



x Learning Classifier Systemgically combine:
x Global searctof evolutionary computingg(.g.Genetic Algorithm)
x Local optimizationof machine learning (supervised or reinforcemen
THINK: Trial and error meets RBarwinian evolution.

x  Solution/output is given by a set of IF:THEN rules.
x Learned patterns are distributed over this set.

x  Qutput is a distributed and generalized probabilistic prediction
model.

x |[F:THEN rules can specify any subset of the attributes available in
environment.

x |[F:THEN rules are only applicable to a subset of possible instance

x IF:THEN rules have their own parameters (e.g. accuracy, fitness)
reflect performance on the instances they match.

x Rules with parameters are termed “classifiers.

x Incremental Learning (Michigastyle LCS)

x Rules are evaluated and evolved one instance from the environme
at a time.

x  Online or Offline Learning (Based on nature of environment)

13



*Genetic algorithms and €Semerge
*Research flourishebut application success limited.

x LCSs are one of the earliest artificial cognitive systems
developed bylohn Holland1978) His workat the University
of Michigan introduced and popularized the genetic algorithm

x | 2ff 1 YyYRQa +AaAdDyeYCIRIAYAILADS
x Fundamental concept of classifier rules and matching.
x Combining a credit assignment scheme with rule discovery.
x Function on environment with infrequent payoff/reward.

x  The early work was ambitious and broad. This has led to many
Jaths being taken to develop the concept over the followdiGg
years.

x *CS1 archetype would later become theasis for
"Michigana (0 &.€B.0

14



x  Pittsburghstylealgorithms introduced b$mithin
Learning Systems One {1L.93]

MAOY Lg

x Bookersuggests nichacting GA (in [M]M].

x Hollandintroduces bucket brigade credit
assignment [5].

X Interest in LCS begins to fade due to inherent
algorithm complexity and failure of systems to
behave and perform reliably.

15



x Frey & Slat@resent an LCS with predictive accuracy fitness
rather than payoffbased strength [6].

MdT

x Riolointroduces CFCS2, setting the scene fae&ning like
methods and anticipatory LCSs [7].

M Cb y x  Wilsonintroduces simplified LCS architecture with ZCS, a
strength-based systen8].

M Cp ) g

H J1 J1 x  Wilsonrevolutionizes LCS algorithms with accuraggsed rule
fithness in XCS [9].

x Holmesapplies LCS to problems in epidemiology [10].

HJ1 M

x  Stolzmanrnntroduces anticipatory classifier systems (ACS) [11]
16



X

Wilsonintroduces XCSF for function approximati@g][

Kovacexplores a number of practical and theoretical LCS
questions [13,14].

BernadeMansillaintroduce UCS for supervised learning [15].
Bullexplores LCS theory in simple systems [16].

Bacarditintroduces two Pittsburgistyle LCS systen@Assisand
BioHEIwith emphasis on data mining and improved scalability
larger datasets[17,18].

HolmesintroducesEpiXC®r epidemiological learning. Paired
with the first LCS graphical user interface to promote accessibi
and ease of use [19].

Butzintroduces first online learning visualization for function
approximation [20].

Lanzi& Loiaconcexplore computed actions [21].




x  Franco &acarditexplored GPU parallelizatiaf LCS foscalability[22].

x  Urbanowicz& Mooreintroduced statistical and visualization strategies for
knowledge discovery in an L{23]. Also explored use @ SE LISNI | Y
to efficiently guide GA24], introduced attribute tracking for explicitly
characterizing heterogeneous patterf#5].

x  Browne and Igbkexplore new concepts in reusing building blocks (i.e., code
fragments) .Solved the 13%it multiplexer reusing building blocks from
simpler multiplexer problems [26].

x  Bacarditsuccessfully applieBioHEIto largescale bioinformatics problems
also exploring visualization strategies for knowledge discovery [27].

x  UrbanowiczntroducedExSTraCiBr supervised learning [28]. Applied
ExSTraC® solve the 135it multiplexer directly .

*Increased interest in supervised learning applications persists.
*Emphasis on solution interpretability and knowledge discovery.
*Scalability improving, 135-bit multiplexer solved!
*GPU interest for computational parallelization.

*Broadening research interest from American & European to|
include Australasian & Asian.

18
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x ~40years ofresearch on LGS a X

x Clarified understanding.
x Producedalgorithmicdescriptions.
x Determined'sweet spots' forun parameters.
x Deliveredunderstandable 'out of the box' code
x5SY2YyAaAauNGSR [/ { I f32NJF
x Flexible
x Widely applicable
x Uniquely functional on particularly complex
problems.

19



X

Learning Classifier SystéhiCS)

X
X

X X X X

In retrospect , an odd name.

There are many machine learnin
systems that learn to classify but
are not LCS algorithms.

E.g. Decision trees

a2 NBFSNNBR
Genetics Based Machine
Learning (GBML)

Adaptive Agents

Cognitive Systems
Production Systems
Classifier System (CS, CFS)

0

Evolutionary Biology

Biology Computer Science

v

Machine Learning

v v

Artificial Intelligence

v

Supervised
Learning

L/

G2 D&X 4
Evolutionary Algorithm

Genetics-Based Machine Learning
Genetic Algorithm "

Learning Classifier System

v

Reinforcement
Learning

20




Two mechanisms are primarily responsible for driving LCS algorithms.

X Discovery
x WSTSNBE (2 AaNHzxZ S RAAO2OSNEEO
x Traditionally performed by genetic algorithn{GA).
X Can use any directed method to find new rules.

21



x Create hypothesised better rules from existing rules & genetic
material.

x Geneticalgorithm
A Original and most common method
A Well studied
A Stochastic process
A The GA used in LCS is most similar to nicBifg

x Estimation of distribution algorithms

A Samplcle the probability distribution, rather than mutation or crossover to create
new rules

A Exploits genetic material

X Bayesian optimisation algorithm
A Use Bayesian networks
A Modekbased learning

22



x When to learn
x Too frequent: unsettled [P]
x Too Infrequent: inefficient training

x What to learn
x Most frequenty A OK S & 2 NX
x Underrepresented niches

x How much to learn
x How many good rules to keep (elitism)
x Size of niche

23



x Inspired by theneo-Darwinisttheory of natural selection, the evolutior
of rules is modeled after the evolution of organisms usﬁmg
biological analogies

N Example Rules
x GenomeA CodedRule (Conditioh === (Ternary Representation)

x Phenotyped ClasqAction) Condition ~ Action
#101# ~ 1

x Survival of the Fittesf Rule Competition
#10## ~ O

x GeneticOperatorsA Rule Discovery 00#1# ~ O
1#011 ~ 1

x Elitism (Essential to LCS)
x LCS preserves the majority of top rules each learning iteration.
x Rules are only deleted to maintain a maximum rule population size (N)

24



r, = 00010001 |

r, = 01110001 s

x Select parent rules

X Set crossover point r, = 00010001 e ,
r, = 01110001 e

x  Apply Single Point Crossover

00010001 x Many variations of
crossovelpossible:
x Twopoint crossover
x Multipoint crossover

¢, = 00110001 x Uniformcrossover
¢, = 01010001

Iy

r, = 01110001

25



x Select parent rule r, = 01110001

x Randomly select bit to mutate r, = 01110001

x Apply mutation r, = 01100001

26



Two mechanisms are primarily responsible for driving LCS algorithms.

X Learning

x The improvement of performance in some environment through the
acquisition of knowledge resulting from experience in that environment.

x Learning is constructing or modifying representations of what is being
experienced.

x  AKA: Credit Assignment
x LCSs traditionally utilizeginforcement learningRL).

x Many different RL schemes have been applied as well as much simpler
supervised learnin¢SL)schemes

27



xWith the advent of computers, humans have been interested in
aSSAY3 K26 | NOUAFAOALFET WHARY(:
X
X

Solveproblems of value that humans find difficult to solve
Forthe curiosity of how learning can be achieved.

X Learning strategies can be divided up in a couple ways.

x Categorized bypresentation of instances
x Batch Learning (Offline
x Incremental Learnin@Online or Offline)

x Categorized bfeedback
x Reinforcement Learning
X Supervised Learning
x Unsupervised.earning

28



x BatchLearningOffline) | x Incremental Learnin¢Online)

Algorithm

Algorithm J

All Data

Environment

00011

Dataset

Or Dataset

29



Supervised learning: The environment
contains a teacher that directly provides the
correct response for environmental states.

Reinforcement learning: The
environment does not directly indicate what
the correct response should have been.
Instead, it only provides reward or punishment
to indicate the utility of actions that were
actually taken by the system.

Unsupervised learning:
The learning system has an
internally defined teacher
with a prescribed goal that
does not need utility
feedback of any kind.

30



x LCS learning primarily involves the update of various rule parameters
adzOK I aX
x Reward prediction (RL only)
x Error
x Fitness

x Many different learning strategies have been applied within LCS
algorithms.

x BucketBrigade [5]

Implicit Bucket Brigade

OneStep PayofPenalty

Symmetrical Payoff Penalty
Multi-Objective Learning

Latent Learning

Widrow-Hoff [8]

Supervised.earningg Accuracy Update [15]
Q-LearningLike [9]

X X X X X X X X

x Fitness Sharing

x Give rule fithess some context within niches.
31



xIn order for artificial learning to occur data containing the patterns
to learn is needed.

x This can be through recorded past experiences or interactive with
currentevents.

x If there areno clear patterns in the dafahenLCSs will not learn



x Demonstratehow afairly typical moderrMichiganstyle
[/ { f3I2NATKYX
X IS structured,
X IS trained on a problem environment,
x makes predictions within that environment

x We use as an example, an LCS architecture most similar
to UCS [15], a supervised learning LCS.

x We assume that it Is learning to perform a _
classification/prediction task on a training dataset with
discretevalued attributes, and a binary endpoint.

x We provide discussion and examples beyond the UCS
architecture throughout thisvalk-through to illustrate
the diversity of system architectures available.

33



e

x Input to the algorithm is often
a training dataset.

* We will add to this diagram progressively to illustrate components of the LCS algorithir
and progress through a typical learning iteration.
34



x Detectors
x Sense the current state of the environment and encode

It as a formatted data instance.
x Grab the next instance from a finite training dataset. (_Detectors )

x Effectors

x Translate action messages into performed actions that | Environment
modify the state of the environment

x The learning capabilities of LCS rely on and are
constrained by the way the agent perceives the > (_Effectors )

environment, e.g., by the detectors the system
employs.

x Input data may be binary, integer, realued, or
some other custom representation, assuming the LCS
algorithm has been coded to handle it.

35



| ommsa Je-nen Class
\ <—Attributes (features) l

92 12 q ~1 —+——> Class Value

. Y
Attribute state values
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[Pl
Empty

Michigan-Style
Rule-Based Algorithm

N

x The rule population set is given ).
x [P] typically starts off empty.
x Thisis different to astandardGA

which typically has an initialized
population.

37



x Afinite setofrulesf8 ¢ KA OK O2f f S&arsh@dSt & SEL.
spac€) @

x Every valid rule can be thoughta$ part of ecandidate
solution(may or may not be good)

x TheaLJy OS 2F +ff OFYRARFIGS ag———"pyYy
aLl OSQo
[P]

X Thesize of the search space is determined by both the
encoding of the LCS itself and the problem itself.

x  The maximum population size (N) is one of the most critical run
parameters.

x User specified

x N = 200 to 20000 rules but success depends on dataset
dimensions and problem complexity.

x Too smallA Solution may not be found

x Too largeA Run time or memory limits too extreme.
38



Population [P]

AN a”a'°9y1 _ Classifier=Condition ‘Action:: Parameter(s)
x Atermite In a mount.
x I NMHz S 2y AGQa 26y Aa y20 | @GAlLo6fS azftdziAz

% Only in collaboration with other rules is the solution space covered.

Each classifier is comprised of@ndition, anaction (a.k.a. class, endpoint, or
phenotype) and associategparameters(statistics).

These parameters are updated evéearningiteration for relevant rules.

Association Model Training Instance Rule
SNP - 3 SNP -3
0 1 2 |/SNP-4
i HHDOHHH#HHH - 1
0 (0.110.6 0.9 1020101012 - 1 | | L
| |
1 10-710.50.4 | LIJ wile Condition Predicted
SNP Attributes Affection Class
2 0.8/0.1/0.2 Status

39



(Ternary Representation)

LCSsan usemany differentrepresentationschemes. Condii
_ A n o oL o qndljtlonv ~ Class
x 1 ta2z NBFTSNNBR u2 | a oSy OZRAYy=a0
x Suited to binary input or #101# ~ 1
x Suited to realvalued inputs and so forth H10#% ~ O
Ternary Encoding traditionally most commonly used 00#1# ~ O
x  The ternary alphabahatchesbinaryinput 1#011 ~ 1

A attribute in the condition that welon't careabout is given the
aeyozt Ul Ww 0gAfR O NRO

For example,
x 101~1 -GKS . 22ftSly ailidSa Uyzy 2FF 2y
x 001~1 -the Boolean states 'ofiff on' has action 'on'

Can be encoded as
x  #01~1 -the Boolean states ' either off on' has action 'on'

In many binary instances, # acts as an OR functiof,&h {
40



x Quaternary Encoding [29] (Quaternary Encoding)
X 0 LJ2a_a_1)\of_S_ I-_uuN\.P\odzuS aL##@######—l 1Y
x For a specific application in genetics. | | L)
_ Rule Condition Predicted
x Reaivalued interval (XC3BO]) Class

x Interval is encoded with two variablesenterand spread
X |.e. [center,spreaflA [centerspread,center+spreafl
x i.e.[0.125,0.023A [0.097, 0.22]

x Realtvalued interval (UBR31])
x Interval is encoded with two variables: lower and upper bound
x l.e. [lower uppel
x i.e.[0.097, 0.222

x Messy EncodingassistBIOHelExSTraC&7,18,28])
x  Attribute-List Knowledge Representation (ALKR) [33]
x 11##0:1 shorten to 110:1 witheference encoding
x Improvestransparency, reduces memory and speeds processing a1



o, Y%

x We have a sparse search space with two classes to identify [0,1]
x | tos real nNumbered so we Q@k&cil®de t o
which works fine in this case...

., et

x We form Hypercubes with the number of dimensions = the number
of conditions.

x  Approximates actual niches, so Classes 2 & 3 difficult to separate
with this encoding, so use Hyperellipsoids

42



x  Mixed DiscreteContinuous ALKR [28]

x Usefulfor bigand data with multiple

attribute types
x Discrete (Binary, Integer, String)
x Continuous (RedValued)

x Similarto ALKRAttribute List
Knowledge Representation):
[Bacarditet al. 09]

x |ntervals used for continuous
attributes anddirect encodingused
for discrete.

Ff\t]:mbUte 5 7 1341351491 71
\ eference
Rule i Lo
Condition 0.1 - 0.5 1 2 0.4 -0.7 high
Classification 1
KEY: Continuous | Discrete
Ternary Mixed
##E###### -1 Attribute o1
| | Reference
| Ll—l Rule
Rule Condition Predicted Condition 0
Class
Classification

43




(Incl:ume range of applicant? )

x Decision tree$32]

$30-70K
x Code Fragments [26] (Yoo st

<1 15 VE:S
x Artificial neurainetwork (T (aodai)

Makes credit
cand payients?

x Fuzzy logic/sets

Caur ) (Sekas)

x Horn clauses and logic
x Sexpressions, Ghke treesandcode fragments.

x NOTE; Alternative action encodings also utilized
x Computed actiong replaces action value withfanction [21]

44



T =

[Pl
Empty

Michigan-Style
Rule-Based Algorithm

x A single training instance is
passed to the LCS each learning
cycle /iteration.

x All the learning and discovery

that takes place this iteration
will focus on this instance.

45



M]

Michigan-Style
Rule-Based Algorithm

46



x How do we form a match set?

[M]

x Find any rules irF that match the current instance.
x!I NMXzZ S YIFOGOKSa |y AyaillyoOoS AFX

x All attribute states specified in the rule equal or include the

complementary attribute state in the instance.

xI 01 Q 0gAftR OFNROU gAff YIFOUOK |ye
x All matching rules are placed iM].

x \What constitutes a match?

x Given:! Yy )\y'éi'll-y'éé gAOK n OAYIl NE I GG N
X Given:RuIea: 1#4#0 ~ 1

xThe first attribute ma Rueieeqsu ablesc atur
for the corresponding attribute state in the instance.

xThe second attr.i Ru]e;ntaishesbsmueaalmesferthath e
attribute.

x Note: Matching strategies are adjusted for different data/rule
encodings.

47



T =

[P

= (<

Michigan-Style
Rule-Based Algorithm

x  What happens if¥1] is empty?

x This is expected to happen early on
in running an LCS.

x Covering mechanism (one form of
rule discovery) is activated.

x Covering is effectively most

responsible for the initialization of
the rule population.

48



x Covering initializes a rule by generalizing an instance,
x Conditiort Generalizatiorof instance attribute states.
x Class
x If supervised learning: Assigned correct class
x If reinforcement learning: Assigned random class/action

(Instance)

(024 o JNHZ S

l

O#12#~1
(New Rule)

x [ 2BSNAY3I FRRa 1 Qa G2 |
generalization (B of 0.33- 0.5 (common settings).

e~

x New rule is assigned initial rule parameter values.

x NOTE: Coveringill only add rules to the population
that match atleastonedatainstance.

X Thisavoids searching irrelevant parts of the search space

49



x Matching:
x Continuousvalued attributes Specified attribute interval in rule must include
iInstance value for attribute. E.g. [0.2, 0.5] includes 0.34.
x Alternate strategy

x Partial match of rule is acceptable (e.g. 3/4 states). Might be useful in high
dimensional problem spaces.

x Covering:
x For supervised learning also activated if no rules are found f& |

x Alternate activation strategies
x Having an insufficient number of matching classifiers for:
x Given class (Good for best action mapping)
x All possible classes (Good for complete action mapping and reinforcement
learning)
x Alternate rule generation
x Rule specificity limit covering [28]:
x Removes need fd?,, useful/critical for problems with many attributes or high
dimensionality.

x Picks some number of attributes from the instance to specify up to a dataset
dependent maximum.

50



(4)
—

T =

[P

= (<

Michigan-Style
Rule-Based Algorithm

x At this point there is a fairly big
difference between LCS operation
depending on learning type.

x Supervised LearningPrediction array
plays no part in training/learning. Itis
only useful in making novel predictions
on unseen data, or evaluating
predictive performance on training
data during training.

x Reinforcement Learning (RL):
Prediction array is responsible for
action selection (if this is an exploit

iteration).
51



Rules in [M] advocate for different classes!
Want to predict a class (known as action selection in RL).
In SL, prediction array just makes prediction.

In RL, prediction array choses predicted action during
exploit phase. A random action is chosen for explore
phases. This action is sent out into the environment. All

rules in [M] with this chosen action forms the action set [A].

Consider the fitness (F) of the rules in an SL example.
Rule, 1##101 ~1 F=0.8,

Rule, 1#0##M ~0 F=0.3,

Rule, 1##1#1 ~0F=0. 4, é

Class/Action can be selected:

x  Deterministically i Class of classifier with best F in [M].

x Probabilistically i Class with best average F across
rules in [M], i.e. Classifiers vote for the best class.

Supervised Learning (SL)

Reinforcement Learning (RL

Action \
Selection

52
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Time / iterations

x  Oneof the biggest problems in evolutiona€y2 Y LJddzd I G A 2 y X
A When to exploit the knowledge that is beitearned?
A When to explore to learn new knowledge?

x  LCS algorithms commonly alternate between explore and exploit for each iteration (incomit
data instance).

x In SL based LCS, there is no need to separate explore and exploit iterations. Every iteratic
prediction array is formed, the [C]is formed (since we know the correct class of the instan
and the GA can discover new rules.
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(4)
—

T =

[P]

= (D

[C]

Michigan-Style
Rule-Based Algorithm

x Assuming SL.: All classifiers in [M] that
specify the correct class form [C].

x  The rest form the incorrect set [l].

x  The prediction from the last set can be
reported to track learning progress.
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Data Instance Rules
02120-~1 2H1H#H#~1
#21#0~1

##12#~0
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0#12# ~ 0

2#1## ~ 1

###02 ~ 0

O#1## ~ 1

#2H##1 ~ 1

#Hit#H#H ~ 0

02##0~ 1

##12# ~ 0

Sample Instance from Training Set

|
Match Set
#1211 ~0 1#22# ~ 1
10102 ~ 0 ###20 ~ 0
22##2 ~ 1 #O#2# ~ 1
#H###0 ~ O #21#0 ~ 1
#101# ~ 1 22#1# ~ 0
2H24# ~ 1 #1### ~ 0
010## ~ 0 HHHH2 ~ 1
##2#0 ~ 0 #H12# ~ 1

2##2# ~ 0

221## ~ 1

##100~ 1

#122#~ 0

Ol### ~ 1

#H#2## ~ 0

##00# ~ 1

O###0 ~ 0O
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T =

(4)
—

[P]

(«2)

(M]

[C]

Update Rule

\ 7
i >

Parameters

Michigan-Style
Rule-Based Algorithm

x A number of parameters are stored
for each rule.

x |n supervised learning LCS, fewer
parameters are required.

x After the formation of [M] and
either [C] or [A], certain parameters
are updated for classifiers in [M].
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x An action/class has been chosen and passed to the
environment.

sed Learn
x Supervised Learning: Parameters

x Parameter Updates:

x Rules in [C] get boost in accuracy.
xwdzZf S& Ay wa® OKI (degtdasegh@dccuracy: | S

x Reinforcement Learning:
x A reward may be returned from the environment
x RL parameters are updated for rules in [M] and/or [A]
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x Experience isicreased in all rules in [M]

x Accuracy Is calculated, e.g. UCS
acc=number of correct classifications
experience

x Fitness is computed as a function of accuracy
F= @co"

X Aused to separate similar fithess classifiers
x Often set to 10 (in problems assuming without noise)

X Pressure to emphasize importance of accuracy
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x Recencyveightedupdate for prediction.

Classifier 1 — ]'jfe;l';fl .
NI L H}II [ |
" ||nmli.ﬂll iyl MH ||k 1T 1
200 l | ' h
20 40 G0 Cal ] 100

x Widrowsl 2 FF dzLJRI GSY
gl f dzS bvalue E

value _ T

x Filters the 'noise' in the reward signal

j

I.I

M

iKS ySg

g f dzS A&

SAAYIEE X
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x Classifier considered

accurate If: p« p+b(R- p),
x Error< tolerance, e« e+ bQR- p|- e),
otherwise scaled - &l if e<e,
“talele)’ otherwisé
x Accuracy relative to P
actionset _ﬁ,
X [A]

x Fitness based on relative F « F+b(k*-F)
accuracy, e.g. XCS
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x Predictionp is updated as follows:

pH p+l [r+ maxRsaRp]

where * Aada GKS RA&AO2dzyd Tl OG0 2 NJ

ris reward, is learning rate Action Set [A]
sis state,ais action 3

____________ K/, 1
: : :  [Al, Learning Strategy
x  Compare this witlQ-learning {_Qlfl_s_si_f&%fl___i*_::::"

Q@s,av H wa)+ [r+ Q*(s(aR0(s,a)]

where h is learningate
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Differentniches of the environment usually have different payoff levels
Phenotypic niche

LY FAOySaa akKlFNAy3a Ofl aairTAirSNREtnedsi NBY
sharing prevents takeover

Fitness sharing does not prevent moesnumerativeniches gaining more classifiers
Niche rule discoverkelps

Rule discovery cannot distinguish an accurate classifier with moderate payoff from
an overly general classifier having the same payoff on aveyayeergenerals
proliferate

No reason for accuratgeneralizationgo evolve

Unnecessarily specifrales survive
63



T =

@ x Subsumptioradds an explicit rule

generalization pressure to LCS.
n [P]

x This mechanism has been applied

() at two points in an LCS learning
M / iteration.

x Among rules in [C] right after its
formation. (Rarely used anymore)

[C] x Following GA rule discovery
offspring rules checked for
Michigan-Style subsumptionagainst parent

\ 7
Update Rule i ‘g “ps .
@ RUHEEE ) A e classifiers and classifiers in [C].

(«2)
%
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X |n sparseor noisy environmentsver-specific rules can take over
population.

Want A 10013###1~1
But gotA 10011#011~1100111111~3 X

0«
(0p)
(0p)
(ant-N
(N

x L OFNBFOGAZ2Y 2F ISy SNXLIASS &

x Need accurate rules first
x Howto set level of accuradpften not 10®6)

x IfNHzZE S ! A& O2 Y L¥) JheSchnddeldteQuledBNdmitle 65 ¢
population without loss of performance

X Subsumptiommechanisms:
x  GAsubsumption @
x Actionset [A]subsumption

x  Subsumption= General rule (A) absorbs a more specific one (B)
X Increases ruleumerosity
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x Numerosityis a useful concept (trick):

x Reduces memory usage

x |nstead of population carrying multiple copies of the same classifier it
just carries one copy.

x Each rule has aumerosityvalue (initialised as 1)

x  Protects rule from deletion
x Stabilises rule population

x Numerosityis increased by 1
x When subsumes another rule
x  When RD makes a copy

x Numerosityis decreased by 1
x Rule is selected fateletion
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x  Numerosity(n) affectsaction selectiorand update
procedures:

x Thefithesssums takenumerosityinto account:

x Terminology:
x Macroclassifiers I f € dzyAljdzeS Of I a4 A FTASNA
x Microclassifiersall individual classifiergn copies ofmacroclassifiers

x Ratio ofmacroclassifierto microclassifiereften used as a
measure of trainingprogress.

x Numerosityis also often applied as a ‘bdstdlF Af | 0 f S Q
to ranking rules for manual rule inspection (i.e. knowledge
dlscover)%.
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T =

©)
€

(4)
o [Pl

9 Genetic
Algorithm

(«2)

(5)
Prediction [M]
[C]

A !

=5
7

Michigan-Style

Update Rule _ .
@ Rule-Based Algorithm

x GA rule discovery is activated if
average experience of classifiers in
selection pool is above a user defined
cut-off.

x Classifier experience is the number
of instances that the classifier has
matched.
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x Parent Selection (typically 2 parents selected)

Genetic
x Selection Pool: AR
x Panmicticg Parents selected from [P] [34]
x Nichec¢ Parents selected from [M], [4]

x Refined Nicheg Parents selected from [C] or [A],[9]

x Niche GA (Closest to LCS GA)

x Niching GAs developed for multi modal problems
x Maintain population diversity to promote identification of multiple peaks
X FitnesssharingLINb aadzNB5 U2 RSUSNIJ F3IIANBIAF GAZ

x Selection Strategy:
x Deterministicg Pick rules with best fitness from pool.
x Randonx rarely used

x  Probabilisticg
x Roulette Wheel
x  Tournament Selection
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T =

LD

?
0
) .
> P O
A

Prediction [Ml .
/

[C]

(«2)

A ] Michigan-Style

Update Rule _ .
@ Rule-Based Algorithm

xLF y2 RStSIAZ2YX

x  Population grows without
bound

x \Waste memory and takes time
S0 not often used

x Panmictiadeletion [P]

x Most common technique based
on inverse fithess roulette wheel

x  Other factors may come into
LI | e X

x Rule age
x [A] size parameter
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(4)
o [Pl

4 INPUT
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Genetic
Algorithm

v /
[C]
\ !
Qe >

Michigan-Style
Rule-Based Algorithm

[P]

OUTPUT

71



Michigan-Style LCS Rule string / "]“SS{‘:T

x Entire population is the x Single rule-set is the
solution solution

x Learns iteratively x Learns batch-wise

x GA operates between x GA operates between
iIndividual rules rule-sets
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