
Introducing Rule-Based Machine Learning:

A Practical Guide

Ryan J Urbanowicz
University of Pennsylvania

Philadelphia, PA, USA

ryanurb@upenn.edu

1

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
GECCO'15 Companion, July 11ï15, 2015, Madrid, Spain.
ACM 978-1-4503-3488-4/15/07.
http://dx.doi.org/10.1145/2739482.2756590

Will Browne
Victoria University of Wellington

Wellington, New Zealand

will.browne@vuw.ac.nz

http://www.sigevo.org/gecco-2015/

http://dx.doi.org/10.1145/2739482.2756590

Instructors

× Ryan Urbanowiczis a post-doctoral research associate at the
University of Pennsylvaniain the Pearlman School of Medicine.
He completed a Bachelors and Masters degree in Biological
Engineering at Cornell University (2004 & 2005) and a Ph.Din
Genetics at Dartmouth College (2012). His research focuses on
the methodological development and application of learning
classifier systems to complex, heterogeneous problems in
bioinformatics, genetics, and epidemiology.

× Will Browne is an Associate Professorat the Victoria University
of Wellington. He completed a Bachelors of Mechanical
Engineering at the University of Bath, a Masters and EngDfrom
Cardiff, post-doc. Leicester and lecturer in Cybernetics at
Reading, UK. His research focuses on applied cognitive
systems. Specifically how to use inspiration from natural
intelligence to enable computers/ machines/ robots to behave
usefully. This includes cognitive robotics, learning classifier
systems, and modern heuristics for industrial application.

2

Bladder Cancer Study: Clinical
Variable Analysis-Survivorship

B

D

p < 0.05

B
A

D

3*Images adapted from [1]

Course Agenda
× Introduction (What and Why?)
× LCS Applications
× Distinguishing Features of an LCS
× Historical Perspective

× Driving Mechanisms
× Discovery
× Learning

× LCS Algorithm Walk-Through (How?)
× Rule Population
× Set Formation
× Covering
× Prediction/Action Selection
× Parameter Updates/Credit Assignment
× Subsumption
× Genetic Algorithm
× Deletion

× Michigan vs. Pittsburgh-style
× Advanced Topics
× Resources

4

Introduction: What is Rule-Based Machine Learning?

× Rule Based Machine Learning (RBML)

× What types of algorithms fall under this label?
× Learning Classifier Systems (LCS)*

× Michigan-style LCS
× Pittsburgh-style LCS

× Association Rule Mining
× Related Algorithms

× Artificial Immune Systems

× Rule-Based ςThe solution/model/output is collectively comprised of individual
rules typically of the form (IF: THEN).

× Machine Learning ςά!subfield of computer science that evolved from the study of
pattern recognition and computational learning theory in artificial intelligence.
Explores the construction and study of algorithms that can learn from and make
ǇǊŜŘƛŎǘƛƻƴǎ ƻƴ ŘŀǘŀΦέ ςWikipedia

× Keep in mind that machine learning algorithms exist across a continuum.
× Hybrid Systems
× Conceptual overlaps in addressing different types of problem domains.

5* LCS algorithms are the focus of this tutorial.

Introduction: Comparison of RBML Algorithms

× Learning Classifier Systems (LCS)
× Developed primarily for modeling, sequential decision making, classification, and prediction in

complex adaptive system .
× IF:THEN rules link independent variable states to dependent variable states. e.g. {V1, V2, V3} Ą

Class/Action

× Association Rule Mining (ARM)
× Developed primarily for discovering interesting relations between variables in large datasets.
× IF:THEN rules link independent variable(s) to some other independent variable e.g. {V1, V2, V3} Ą V4

× Artificial Immune Systems (AIS)
× Developed primarily for anomaly detection (i.e. differentiating between self vs. not-self)
× aǳƭǘƛǇƭŜ ȫ!ƴǘƛōƻŘƛŜǎΩ όƛΦŜΦ ŘŜǘŜŎǘƻǊǎύ ŀǊŜ ƭŜŀǊƴŜŘ ǿƘƛŎƘ ŎƻƭƭŜŎǘƛǾŜƭȅ ŎƘŀǊŀŎǘŜǊƛȊŜ ΨǎŜƭŦΩ ƻǊ ΨΩƴƻǘ-ǎŜƭŦΩ

based on an affinity threshold.

× ²ƘŀǘΩǎ ƛƴ ŎƻƳƳƻƴΚ
× In each case, the solution or output is determined piece-ǿƛǎŜ ōȅ ŀ ǎŜǘ ƻŦ ȫǊǳƭŜǎΩ ǘƘŀǘ ŜŀŎƘ ŎƻǾŜǊ ǇŀǊǘ ƻŦ
ǘƘŜ ǇǊƻōƭŜƳ ŀǘ ƘŀƴŘΦ bƻ ǎƛƴƎƭŜΣ ȫƳƻŘŜƭΩ ŜȄǇǊŜǎǎƛƻƴ ƛǎ ƻǳǘǇǳǘ ǘƘŀǘ ǎŜŜƪǎ ǘƻ ŘŜǎŎǊƛōŜ ǘƘŜ ǳƴŘŜǊƭȅƛƴƎ
pattern(s).

× This tutorial will focus on LCS algorithms, and approach them initially from a supervised
learning perspective (for simplicity).

6

Introduction: Why LCS Algorithms? {1 of 3}

× AdaptiveςAccommodate a changing environment. Relevant parts of solution can
evolve/update to accommodate changes in problem space.

× Model Free ςLimited assumptions about the environment*
× Can accommodate complex, epistatic, heterogeneous, or distributed underlying patterns.
× No assumptions about the number of predictive vs. non-predictive attributes (feature selection).

× Ensemble Learner (unofficial) ςNo single model is applied to a given instance to yield a
ǇǊŜŘƛŎǘƛƻƴΦ LƴǎǘŜŀŘ ŀ ǎŜǘ ƻŦ ǊŜƭŜǾŀƴǘ ǊǳƭŜǎ ŎƻƴǘǊƛōǳǘŜ ŀ ȫǾƻǘŜΩΦ

× Stochastic Learner ςNon-deterministic learning is advantageous in large-scale or high
complexity problems, where deterministic learning becomes intractable.

× Multi -objective(Implicitly) ςRules evolved towards accuracy and generality/simplicity.

× Interpretable (Data Mining/Knowledge Discovery) ςDepending on rule representation,
individual rules are logical and human readable IF:THEN statements. Strategies have
been proposed for global knowledge discovery over the rule population solution [23].

7* ¢ƘŜ ǘŜǊƳ ȫŜƴǾƛǊƻƴƳŜƴǘΩ ǊŜŦŜǊǎ ǘƻ ǘƘŜ ǎƻǳǊŎŜ ƻŦ ǘǊŀƛƴƛƴƎ ƛƴǎǘŀƴŎŜǎ ŦƻǊ ŀ ǇǊƻōƭŜƳκǘŀǎƪΦ

×Other Advantages

×Applicable to single-step or multi-step problems.

×Representation Flexibility: Can accommodate discrete or continuous-valued
endpoints* and attributes (i.e. Dependent or Independent Variables)

×Can learn in clean or very noisy problem environments.

×Accommodates missing data (i.e. missing attribute values within training
instances).

×Classifies binary or multi-class discrete endpoints (classification).

×Can accommodate balanced or imbalanced datasets (classification).

8

Introduction: Why LCS Algorithms? {2 of 3}

* ²Ŝ ǳǎŜ ǘƘŜ ǘŜǊƳ ȫŜƴŘǇƻƛƴǘǎΩ ǘƻ ƎŜƴŜǊŀƭƭȅ ǊŜŦŜǊ ǘƻ ŘŜǇŜƴŘŜƴǘ ǾŀǊƛŀōƭŜǎ Φ

×Many Application Domains
×Cognitive Modeling
×Complex Adaptive Systems
×Reinforcement Learning
×Supervised Learning
×Unsupervised Learning (rare)
×Metaheuristics
×Data Mining
×Χ

9

Introduction: Why LCS Algorithms? {3 of 3}

*Slide adapted from LanziTutorial: GECCO 2014

× LCS Algorithms: One concept, many
components, infinite combinations.
× Rule Representations
× Learning Strategy
× Discovery Mechanisms
× Selection Mechanisms
× Prediction Strategy
× Fitness Function
× Supplemental Heuristics
×Χ

10

Introduction: LCS Applications - General

× Classification / Data Mining Problems:
(Label prediction)

×Find a compact set of rules that classify
all problem instances with maximal
accuracy.

× Reinforcement Learning Problems &
Sequential Decision Making
×Find an optimal behavioral policy

represented by a compact set of rules.

× Function Approximation Problems &
Regression: (Numerical prediction)

×Find an accurate function approximation
represented by a partially overlapping
set of approximation rules.

11

Introduction: LCS Applications ςUniquely Suited

×¦ƴƛǉǳŜƭȅ {ǳƛǘŜŘ ¢ƻ tǊƻōƭŜƳǎ ǿƛǘƘΧ
×Dynamic environments
×Perpetually novel events accompanied by large amounts of noisy

or irrelevant data.
×Continual, often real-time, requirements for actions.
× Implicitly or inexactly defined goals.
×Sparcepayoff or reinforcement obtainable only through long

action sequences [Booker 89].

×!ƴŘ ǘƘƻǎŜ ǘƘŀǘ ƘŀǾŜΧ
×High Dimensionality
×Noise
×Multiple Classes
×Epistasis
×Heterogeneity
×Hierarchical dependencies
×Unknown underlying complexity or dynamics

12

Introduction: LCSApplications ςSpecific Examples

Search

Modelling

Knowledge-HandlingRouting

Visualisation

Game-playing

Data-mining

Prediction

Optimisation

Scheduling

Design

Querying

Adaptive-control

Rule-Induction

Medical Diagnosis

Feature Selection

Navigation

Image classification

13

Introduction: Distinguishing Features of an LCS

× Learning Classifier Systemstypically combine:
× Global searchof evolutionary computing (e.g. Genetic Algorithm)
× Local optimization of machine learning (supervised or reinforcement)

THINK: Trial and error meets neo-Darwinian evolution.

× Solution/output is given by a set of IF:THEN rules.
× Learned patterns are distributed over this set.
× Output is a distributed and generalized probabilistic prediction

model.
× IF:THEN rules can specify any subset of the attributes available in the

environment.
× IF:THEN rules are only applicable to a subset of possible instances.
× IF:THEN rules have their own parameters (e.g. accuracy, fitness) that

reflect performance on the instances they match.
× Rules with parameters are termed `classifiers.

× Incremental Learning (Michigan-style LCS)
× Rules are evaluated and evolved one instance from the environment

at a time.

× Online or Offline Learning (Based on nature of environment)

[P]

14

Introduction: Historical Perspective {1 of 5}

× LCSs are one of the earliest artificial cognitive systems -
developed by John Holland (1978). His work at the University
of Michigan introduced and popularized the genetic algorithm.

× IƻƭƭŀƴŘΩǎ ±ƛǎƛƻƴΥ /ƻƎƴƛǘƛǾŜ {ȅǎǘŜƳ One (CS-1) [2]
× Fundamental concept of classifier rules and matching.

× Combining a credit assignment scheme with rule discovery.

× Function on environment with infrequent payoff/reward.

× The early work was ambitious and broad. This has led to many
paths being taken to develop the concept over the following 40
years.

× *CS-1 archetype would later become the basis for

`Michigan-ǎǘȅƭŜΩ LCSs.

мфтлΩǎ

мфулΩǎ

мффлΩǎ

нлллΩǎ

нлмлΩǎ

*Genetic algorithms and CS-1 emerge
*Research flourishes, but application success is limited.

15

Introduction: Historical Perspective {2 of 5}

мфтлΩǎ

мфулΩǎ

мффлΩǎ

нлллΩǎ

нлмлΩǎ

*LCS subtypes appear: Michigan-style vs. Pittsburgh-style
*Holland adds reinforcement learning to his system.

*¢ŜǊƳ ȫ[ŜŀǊƴƛƴƎ /ƭŀǎǎƛŦƛŜǊ {ȅǎǘŜƳΩ ŀŘƻǇǘŜŘΦ
*Research Ŧƻƭƭƻǿǎ IƻƭƭŀƴŘΩǎ Ǿƛǎƛƻƴ ǿƛǘƘ ƭƛƳƛǘŜŘ success.

*Interest in LCS begins to fade.

× Pittsburgh-style algorithms introduced by Smithin
Learning Systems One (LS-1) [3]

× Bookersuggests niche-acting GA (in [M]) [4].

× Hollandintroduces bucket brigade credit
assignment [5].

× Interest in LCS begins to fade due to inherent
algorithm complexity and failure of systems to
behave and perform reliably.

16

Introduction: Historical Perspective {3 of 5}

мфтлΩǎ

мфулΩǎ

мффлΩǎ

нлллΩǎ

нлмлΩǎ

*REVOLUTION!

*Simplified LCS algorithm architecture with ZCS.

*XCS is born: First reliable and more comprehensible LCS.

*First classification and robotics applications (real-world).

× Wilsonrevolutionizes LCS algorithms with accuracy-based rule
fitness in XCS [9].

× Holmesapplies LCS to problems in epidemiology [10].

× Stolzmannintroduces anticipatory classifier systems (ACS) [11].

× Frey & Slate present an LCS with predictive accuracy fitness
rather than payoff-based strength [6].

× Riolointroduces CFCS2, setting the scene for Q-learning like
methods and anticipatory LCSs [7].

× Wilsonintroduces simplified LCS architecture with ZCS, a
strength-based system [8].

17

Introduction: Historical Perspective {4 of 5}

мфтлΩǎ

мфулΩǎ

мффлΩǎ

нлллΩǎ

нлмлΩǎ

*LCS algorithm specializing in supervised learning and data
mining start appearing.

*LCS scalability becomes a central research theme.

*Increasing interest in epidemiological and bioinformatics.

*Facet-wise theory and applications

× Wilsonintroduces XCSF for function approximation [12].

× Kovacsexplores a number of practical and theoretical LCS
questions [13,14].

× Bernado-Mansillaintroduce UCS for supervised learning [15].

× Bullexplores LCS theory in simple systems [16].

× Bacarditintroduces two Pittsburgh-style LCS systems GAssistand
BioHELwith emphasis on data mining and improved scalability to
larger datasets[17,18].

× Holmesintroduces EpiXCSfor epidemiological learning. Paired
with the first LCS graphical user interface to promote accessibility
and ease of use [19].

× Butzintroduces first online learning visualization for function
approximation [20].

× Lanzi& Loiaconoexplore computed actions [21].

18

Introduction: Historical Perspective {5 of 5}

мфтлΩǎ

мфулΩǎ

мффлΩǎ

нлллΩǎ

нлмлΩǎ

*Increased interest in supervised learning applications persists.

*Emphasis on solution interpretability and knowledge discovery.

*Scalability improving ς135-bit multiplexer solved!

*GPU interest for computational parallelization.

*Broadening research interest from American & European to
include Australasian & Asian.

× Franco & Bacarditexplored GPU parallelization of LCS for scalability [22].

× Urbanowicz& Moore introduced statistical and visualization strategies for
knowledge discovery in an LCS [23]. Also explored use of ȫŜȄǇŜǊǘ ƪƴƻǿƭŜŘƎŜΩ
to efficiently guide GA [24], introduced attribute tracking for explicitly
characterizing heterogeneous patterns [25].

× Browne and Iqbal explore new concepts in reusing building blocks (i.e., code
fragments) . Solved the 135-bit multiplexer reusing building blocks from
simpler multiplexer problems [26].

× Bacardit successfully applied BioHELto large-scale bioinformatics problems
also exploring visualization strategies for knowledge discovery [27].

× Urbanowiczintroduced ExSTraCSfor supervised learning [28]. Applied
ExSTraCSto solve the 135-bit multiplexer directly .

19

Introduction: Historical Perspective - Summary

мфтлΩǎ

мфулΩǎ

мффлΩǎ

нлллΩǎ

нлмлΩǎ

×~40 years of research on LCS ƘŀǎΧ

×Clarified understanding.
×Produced algorithmic descriptions.
×Determined 'sweet spots' for run parameters.
×Delivered understandable 'out of the box' code.
×5ŜƳƻƴǎǘǊŀǘŜŘ [/{ ŀƭƎƻǊƛǘƘƳǎ ǘƻ ōŜΧ
×Flexible
×Widely applicable
×Uniquely functional on particularly complex
problems.

20

Introduction: Naming Convention & Field Tree

× Learning Classifier System (LCS)
× In retrospect , an odd name.
× There are many machine learning

systems that learn to classify but
are not LCS algorithms.

× E.g. Decision trees

× !ƭǎƻ ǊŜŦŜǊǊŜŘ ǘƻ ŀǎΧ
× Genetics Based Machine

Learning (GBML)
× Adaptive Agents
× Cognitive Systems
× Production Systems
× Classifier System (CS, CFS)

21

Driving Mechanisms

Two mechanisms are primarily responsible for driving LCS algorithms.

× Discovery
×wŜŦŜǊǎ ǘƻ άǊǳƭŜ ŘƛǎŎƻǾŜǊȅέΦ
× Traditionally performed by a genetic algorithm (GA).
× Can use any directed method to find new rules.

× Learning
× The improvement of performance in some environment through the

acquisition of knowledge resulting from experience in that environment.
× Learning is constructing or modifying representations of what is being

experienced.
× AKA: Credit Assignment
× LCSs traditionally utilized reinforcement learning (RL).
× Many different RL schemes have been applied as well as much simpler

supervised learning schemes.

22

Driving Mechanisms:LCS Rule Discovery {1 of 2}

× Create hypothesised better rules from existing rules & genetic
material.

× Genetic algorithm
ÅOriginal and most common method

ÅWell studied

ÅStochastic process

ÅThe GA used in LCS is most similar to niching GAs

× Estimation of distribution algorithms
ÅSample the probability distribution, rather than mutation or crossover to create

new rules

ÅExploits genetic material

× Bayesian optimisation algorithm
Å Use Bayesian networks

Å Model-based learning

23

Driving Mechanisms: LCS Rule Discovery {2 of 2}

×When to learn

×Too frequent: unsettled [P]
×Too infrequent: inefficient training

×What to learn

×Most frequent ƴƛŎƘŜǎ ƻǊΧ

×Underrepresented niches

×How much to learn
×How many good rules to keep (elitism)

×Size of niche

× Inspired by the neo-Darwinisttheory of natural selection, the evolution
of rules is modeled after the evolution of organisms using four
biological analogies.

×Genome ĄCoded Rule (Condition)

×Phenotype ĄClass (Action)

×Survival of the Fittest Ą Rule Competition

×Genetic Operators Ą Rule Discovery

× Elitism (Essential to LCS)
×LCS preserves the majority of top rules each learning iteration.
×Rules are only deleted to maintain a maximum rule population size (N).

1 0 1 # ~ 1

1 0 # # ~ 0

1 # 0 1 1 ~ 1

0 0 # 1 # ~ 0

Condition ~ Action

24

Driving Mechanisms: Genetic Algorithm (GA)

Example Rules
(Ternary Representation)

25

× Select parent rules

× Set crossover point

× Apply Single Point Crossover

r1 = 00010001

r2 = 01110001

r1 = 00010001

r2 = 01110001

r1 = 00010001

r2 = 01110001

c1 = 00110001

c2 = 01010001

×Many variations of
crossover possible:
×Two point crossover
×Multipoint crossover
×Uniform crossover

Driving Mechanisms: GA ςCrossover Operator

26

×Select parent rule

×Randomly select bit to mutate

×Apply mutation

r1 = 01110001

r1 = 01110001

r1 = 01100001

Driving Mechanisms: GA ςMutation Operator

27

Driving Mechanisms

Two mechanisms are primarily responsible for driving LCS algorithms.

× Discovery
×wŜŦŜǊǎ ǘƻ άǊǳƭŜ ŘƛǎŎƻǾŜǊȅέ
× Traditionally performed by a genetic algorithm (GA)
× Can use any directed method to find new rules

× Learning
× The improvement of performance in some environment through the

acquisition of knowledge resulting from experience in that environment.
× Learning is constructing or modifying representations of what is being

experienced.
× AKA: Credit Assignment
× LCSs traditionally utilized reinforcement learning (RL).
× Many different RL schemes have been applied as well as much simpler

supervised learning(SL) schemes.

×With the advent of computers, humans have been interested in
ǎŜŜƛƴƎ Ƙƻǿ ŀǊǘƛŦƛŎƛŀƭ ΨŀƎŜƴǘǎΩ ŎƻǳƭŘ ƭŜŀǊƴΦ 9ƛǘƘŜǊ ƭŜŀǊƴƛƴƎ ǘƻΧ
× Solve problems of value that humans find difficult to solve

× For the curiosity of how learning can be achieved.

× Learning strategies can be divided up in a couple ways.

× Categorized by presentation of instances
×Batch Learning (Offline)
× Incremental Learning (Online or Offline)

× Categorized by feedback
×Reinforcement Learning
×Supervised Learning
×Unsupervised Learning

28

Driving Mechanisms: Learning

×Batch Learning (Offline) ×Incremental Learning (Online)

Dataset

Algorithm Algorithm

Environment
Or Dataset

01100011

All Data

29

Driving Mechanisms:
Learning Categorized by Presentation of Instances

Supervised learning: The environment

contains a teacher that directly provides the

correct response for environmental states.

Reinforcement learning: The

environment does not directly indicate what

the correct response should have been.

Instead, it only provides reward or punishment

to indicate the utility of actions that were

actually taken by the system.

Unsupervised learning:
The learning system has an

internally defined teacher

with a prescribed goal that

does not need utility

feedback of any kind.

30

Driving Mechanisms:
Learning Categorized by Feedback

× LCS learning primarily involves the update of various rule parameters
ǎǳŎƘ ŀǎΧ
× Reward prediction (RL only)
× Error
× Fitness

× Many different learning strategies have been applied within LCS
algorithms.
× Bucket Brigade [5]
× Implicit Bucket Brigade
× One-Step Payoff-Penalty
× Symmetrical Payoff Penalty
× Multi-Objective Learning
× Latent Learning
×Widrow-Hoff [8]
× Supervised Learning ςAccuracy Update [15]
× Q-Learning-Like [9]

× Fitness Sharing
× Give rule fitness some context within niches.

31

Driving Mechanisms: LCS Learning

× In order for artificial learning to occur data containing the patterns
to learn is needed.

× This can be through recorded past experiences or interactive with
current events.

× If there are no clear patterns in the data, then LCSs will not learn.

Driving Mechanisms: Assumptions for Learning

33

LCS Algorithm Walk-Through

×Demonstrate how afairly typical modern Michigan-style
[/{ ŀƭƎƻǊƛǘƘƳΧ
×is structured,
×is trained on a problem environment,
×makes predictions within that environment

×We use as an example, an LCS architecture most similar
to UCS [15], a supervised learning LCS.

×We assume that it is learning to perform a
classification/prediction task on a training dataset with
discrete-valued attributes, and a binary endpoint.

×We provide discussion and examples beyond the UCS
architecture throughout this walk-through to illustrate
the diversity of system architectures available.

Data Set INPUT

34

LCS Algorithm Walk-Through: Input {1 of 2}

×Input to the algorithm is often
a training dataset.

* We will add to this diagram progressively to illustrate components of the LCS algorithm
and progress through a typical learning iteration.

× Detectors
×Sense the current state of the environment and encode

it as a formatted data instance.
×Grab the next instance from a finite training dataset.

× Effectors
×Translate action messages into performed actions that

modify the state of the environment

× The learning capabilities of LCS rely on and are
constrained by the way the agent perceives the
environment, e.g., by the detectors the system
employs.

× Input data may be binary, integer, real-valued, or
some other custom representation, assuming the LCS
algorithm has been coded to handle it.

Environment

Detectors

Effectors

35

LCS Algorithm Walk-Through: Input {2 of 2}

Data Set

Attributes (features)

Class

0 2 1 2 0 ~ 1

36

LCS Algorithm Walk-Through: Input Dataset

Attribute state values

Class Value

Data Set INPUT

[P]

LCS: Michigan-Style

Rule-Based Algorithm

Empty

37

Data Set INPUT

LCS Algorithm Walk-Through: Rule Population {1 of 2}

×The rule population set is given by [P].

×[P] typically starts off empty.

×This is different to a standard GA
which typically has an initialized
population.

× A finite set of rules [Pϐ ǿƘƛŎƘ ŎƻƭƭŜŎǘƛǾŜƭȅ ŜȄǇƭƻǊŜ ǘƘŜ Ψsearch
spaceΩΦ

× Every valid rule can be thought of as part of a candidate
solution (may or may not be good)

× The ǎǇŀŎŜ ƻŦ ŀƭƭ ŎŀƴŘƛŘŀǘŜ ǎƻƭǳǘƛƻƴǎ ƛǎ ǘŜǊƳŜŘ ǘƘŜ ΨǎŜŀǊŎƘ
ǎǇŀŎŜΩΦ

× The size of the search space is determined by both the
encoding of the LCS itself and the problem itself.

× The maximum population size (N) is one of the most critical run
parameters.
× User specified
× N = 200 to 20000 rules but success depends on dataset

dimensions and problem complexity.
× Too small Ą Solution may not be found
× Too large ĄRun time or memory limits too extreme.

38

LCS Algorithm Walk-Through: Rule Population {2 of 2}

[P]

× An analogy:
× A termite in a mount.
× ! ǊǳƭŜ ƻƴ ƛǘΩǎ ƻǿƴ ƛǎ ƴƻǘ ŀ ǾƛŀōƭŜ ǎƻƭǳǘƛƻƴΦ
× Only in collaboration with other rules is the solution space covered.

× Each classifier is comprised of a condition, an action (a.k.a. class, endpoint, or
phenotype), and associated parameters (statistics).

× These parameters are updated every learning iteration for relevant rules.

Training Instance RuleAssociation Model

39

LCS Algorithm Walk-Through: LCS Rules/Classifiers

Population [P]

Classifiern = Condition : Action :: Parameter(s)

× LCSs can use many different representation schemes.

×!ƭǎƻ ǊŜŦŜǊǊŜŘ ǘƻ ŀǎ ȫŜƴŎƻŘƛƴƎǎΩ

× Suited to binary input or

× Suited to real-valued inputs and so forth...

× Ternary Encoding ςtraditionally most commonly used

× The ternary alphabet matches binary input

× A attribute in the condition that we don't care about is given the
ǎȅƳōƻƭ ϥІΨ όǿƛƭŘ ŎŀǊŘύ

× For example,

× 101~1 -ǘƘŜ .ƻƻƭŜŀƴ ǎǘŀǘŜǎ ϥƻƴ ƻŦŦ ƻƴϥ Ƙŀǎ ŀŎǘƛƻƴ ϥƻƴΨ

× 001~1 - the Boolean states 'off off on' has action 'on'

× Can be encoded as

× #01~1 - the Boolean states ' either off on' has action 'on'

× In many binary instances, # acts as an OR function on {0,1}
40

LCS Algorithm Walk-Through: Rule Representation-
Ternary

1 0 1 # ~ 1

1 0 # # ~ 0

1 # 0 1 1 ~ 1

0 0 # 1 # ~ 0

Condition ~ Class

(Ternary Representation)

× Quaternary Encoding [29]
×о ǇƻǎǎƛōƭŜ ŀǘǘǊƛōǳǘŜ ǎǘŀǘŜǎ ϑлΣмΣнϒ Ǉƭǳǎ ΨІΩΦ

× For a specific application in genetics.

× Real-valued interval (XCSR [30])
× Interval is encoded with two variables: centerand spread

× i.e. [center,spread] Ą [center-spread, center+spread]

× i.e. [0.125,0.023] Ą [0.097, 0.222]

× Real-valued interval (UBR [31])
× Interval is encoded with two variables: lower and upper bound

× i.e. [lower, upper]

× i.e. [0.097, 0.222]

× Messy Encoding (Gassist, BIOHel, ExSTraCS[17,18,28])
× Attribute-List Knowledge Representation (ALKR) [33]

× 11##0:1 shorten to 110:1 with reference encoding

× Improves transparency, reduces memory and speeds processing 41

(Quaternary Encoding)

LCS Algorithm Walk-Through: Rule Representationς
Other {1 of 4}

42

× We form Hypercubes with the number of dimensions = the number

of conditions.

× Approximates actual niches, so Classes 2 & 3 difficult to separate

with this encoding, so use Hyperellipsoids

. 1

. 0

N(x) S

. 1

. 0

N(x) S

.2

.3

LCS Algorithm Walk-Through: Rule Representationς
Other {2 of 4}

× We have a sparse search space with two classes to identify [0,1]

× Itôs real numbered so we decide to use bounds: e.g. 0 Ò xÒ 10,

which works fine in this case...

.2

.3

×Mixed Discrete-Continuous ALKR [28]

×Useful for big and data with multiple
attribute types

×Discrete (Binary, Integer, String)

×Continuous (Real-Valued)

×Similar to ALKR (Attribute List
Knowledge Representation):
[Bacarditet al. 09]

× Intervals used for continuous
attributes and direct encoding used
for discrete.

Ternary Mixed

43

LCS Algorithm Walk-Through: Rule Representationς
Other {3 of 4}

× Decision trees [32]

× Code Fragments [26]

× Artificial neural networks

× Fuzzy logic/sets

× Horn clauses and logic

× S-expressions, GP-like trees and code fragments.

× NOTE ςAlternative action encodings also utilized
×Computed actions ςreplaces action value with a function [21]

44

LCS Algorithm Walk-Through: Rule Representationς
Other {4 of 4}

[P]

2

Data Set1

LCS: Michigan-Style

Rule-Based Algorithm

Training Instance

Empty

45

× A single training instance is
passed to the LCS each learning
cycle /iteration.

× All the learning and discovery
that takes place this iteration
will focus on this instance.

LCS Algorithm Walk-Through: Get Training Instance

INPUT

[P]

[M]

2

3

Data Set1

LCS: Michigan-Style

Rule-Based Algorithm

Training Instance

46

LCS Algorithm Walk-Through: Form Match Set [M]

INPUT

47

×How do we form a match set?
×Find any rules in [P] that match the current instance.

×! ǊǳƭŜ ƳŀǘŎƘŜǎ ŀƴ ƛƴǎǘŀƴŎŜ ƛŦΧ
×All attribute states specified in the rule equal or include the
complementary attribute state in the instance.

×! ȫІΩ όǿƛƭŘ ŎŀǊŘύ ǿƛƭƭ ƳŀǘŎƘ ŀƴȅ ǎǘŀǘŜ ǾŀƭǳŜ ƛƴ ǘƘŜ ƛƴǎǘŀƴŎŜΦ

×All matching rules are placed in [M].

×What constitutes a match?
×Given: !ƴ ƛƴǎǘŀƴŎŜ ǿƛǘƘ п ōƛƴŀǊȅ ŀǘǘǊƛōǳǘŜǎ ǎǘŀǘŜǎ ȫммлмΩ ŀƴŘ Ŏƭŀǎǎ мΦ

×Given: Rule
a
= 1##0 ~ 1

×The first attribute matches because the ó1ô specified by Rule
a
equals the ó1ô

for the corresponding attribute state in the instance.

×The second attributes because the ó#ô in Rule
a
matches state value for that

attribute.

×Note: Matching strategies are adjusted for different data/rule
encodings.

LCS Algorithm Walk-Through: Matching
[M][M]

[P]

[M]

2

3

Data Set1

LCS: Michigan-Style

Rule-Based Algorithm

Training Instance

48

INPUT

Covering

4

LCS Algorithm Walk-Through: Covering {1 of 2}

×What happens if [M] is empty?

× This is expected to happen early on
in running an LCS.

× Covering mechanism (one form of
rule discovery) is activated.

× Covering is effectively most
responsible for the initialization of
the rule population.

49

× Covering initializes a rule by generalizing an instance.

×Condition: Generalization of instance attribute states.

×Class:

×If supervised learning: Assigned correct class

×If reinforcement learning: Assigned random class/action

×/ƻǾŜǊƛƴƎ ŀŘŘǎ ІΩǎ ǘƻ ŀ ƴŜǿ ǊǳƭŜ ǿƛǘƘ ǇǊƻōŀōƛƭƛǘȅ ƻŦ
generalization (P#) of 0.33 - 0.5 (common settings).

× New rule is assigned initial rule parameter values.

× NOTE: Covering will only add rules to the population
that match at least one data instance.

×Thisavoids searching irrelevant parts of the search space.

Covering

LCS Algorithm Walk-Through: Covering {2 of 2}

0 2 1 2 0 ~ 1

0 # 1 2 # ~ 1

(Instance)

(New Rule)

50

LCS Algorithm Walk-Through: Special Cases for
Matching and Covering

×Matching:
× Continuous-valued attributes: Specified attribute interval in rule must include

instance value for attribute. E.g. [0.2, 0.5] includes 0.34.

× Alternate strategy-

×Partial match of rule is acceptable (e.g. 3/4 states). Might be useful in high
dimensional problem spaces.

×Covering:
× For supervised learning ςalso activated if no rules are found for [C]

× Alternate activation strategies-

×Having an insufficient number of matching classifiers for:

×Given class (Good for best action mapping)

×All possible classes (Good for complete action mapping and reinforcement
learning)

× Alternate rule generation-

×Rule specificity limit covering [28]:

×Removes need for P#., useful/critical for problems with many attributes or high
dimensionality.

×Picks some number of attributes from the instance to specify up to a dataset-
dependent maximum.

[P]

[M]

Covering

2

3

4

Data Set1

LCS: Michigan-Style

Rule-Based Algorithm

Training Instance

51

INPUT

Prediction

5

LCS Algorithm Walk-Through:PredictionArray {1 of 2}

× At this point there is a fairly big
difference between LCS operation
depending on learning type.

× Supervised Learning: Prediction array
plays no part in training/learning. It is
only useful in making novel predictions
on unseen data, or evaluating
predictive performance on training
data during training.

× Reinforcement Learning (RL):
Prediction array is responsible for
action selection (if this is an exploit
iteration).

52

× Rules in [M] advocate for different classes!

× Want to predict a class (known as action selection in RL).

× In SL, prediction array just makes prediction.

× In RL, prediction array choses predicted action during

exploit phase. A random action is chosen for explore

phases. This action is sent out into the environment. All

rules in [M] with this chosen action forms the action set [A].

× Consider the fitness (F) of the rules in an SL example.

Rule
a

1##101 ~ 1 F = 0.8,

Rule
b

1#0##1 ~ 0 F = 0.3,

Rule
c

1##1#1 ~ 0 F = 0.4, é

× Class/Action can be selected:

× DeterministicallyïClass of classifier with best F in [M].

× ProbabilisticallyïClass with best average F across

rules in [M], i.e. Classifiers vote for the best class.

Action

Selection

LCS Algorithm Walk-Through:PredictionArray {2 of 2}

[M]

3

[C][I]

6

Prediction

5

Supervised Learning (SL)

Reinforcement Learning (RL)

[M]

3

[A]

6

Prediction

5

53

× One of the biggest problems in evolutionary ŎƻƳǇǳǘŀǘƛƻƴΧ

Å When to exploit the knowledge that is being learned?

Å When to explore to learn new knowledge?

× LCS algorithms commonly alternate between explore and exploit for each iteration (incoming
data instance).

× In SL based LCS, there is no need to separate explore and exploit iterations. Every iteration: a
prediction array is formed, the [C] is formed (since we know the correct class of the instance),
and the GA can discover new rules.

LCS Algorithm Walk-Through: RL - Explore vs. Exploit

[P]

[M]

Covering

2

3

4

Data Set1

[C][I]

6

LCS: Michigan-Style

Rule-Based Algorithm

Training Instance

54

INPUT

Prediction

5

LCS Algorithm Walk-Through: Form Correct Set [C]

× Assuming SL: All classifiers in [M] that
specify the correct class form [C].

× The rest form the incorrect set [I].

× The prediction from the last set can be
reported to track learning progress.

[M]

0 2 1 2 0 ~ 1 2 # 1 # # ~ 1

Rules

2 1 # 0 ~ 1

1 2 # ~ 0

Data Instance

[C]

[I]

55

LCS Algorithm Walk-Through: Example [M] and [C]

0#12# ~ 0

2#1## ~ 1

###02 ~ 0

0#1## ~ 1

#2##1 ~ 1

~ 0

02##0~ 1

##12# ~ 0

#1211 ~ 0

10102 ~ 0

22##2 ~ 1

####0 ~ 0

#101# ~ 1

2#2## ~ 1

010## ~ 0

##2#0 ~ 0

1#22# ~ 1

###20 ~ 0

#0#2# ~ 1

#21#0 ~ 1

22#1# ~ 0

#1### ~ 0

####2 ~ 1

##12# ~ 1

2##2# ~ 0

221## ~ 1

##100~ 1

#122# ~ 0

01### ~ 1

##2## ~ 0

##00# ~ 1

0###0 ~ 0

Sample Instance from Training Set

02120 ~ 1Match Set Correct Set

56

[P]

[M]

Covering

2

3

4

Update Rule

Parameters
7

Data Set1

[C][I]

6

LCS: Michigan-Style

Rule-Based Algorithm

Training Instance

×A number of parameters are stored
for each rule.

× In supervised learning LCS, fewer
parameters are required.

×After the formation of [M] and
either [C] or [A] , certain parameters
are updated for classifiers in [M].

57

INPUT

LCS Algorithm Walk-Through:
Update Rule Parameters / Credit Assignment {1 of 2}

Prediction

5

58

×An action/class has been chosen and passed to the
environment.

×Supervised Learning:
×Parameter Updates:
×Rules in [C] get boost in accuracy.

×wǳƭŜǎ ƛƴ ώaϐ ǘƘŀǘ ŘƛŘƴΩǘ ƳŀƪŜ ƛǘ ǘƻ ώ/ϐ ƎŜǘ decreased in accuracy.

×Reinforcement Learning:
×A reward may be returned from the environment

×RL parameters are updated for rules in [M] and/or [A]

LCS Algorithm Walk-Through:
Update Rule Parameters / Credit Assignment {2 of 2}

Update Rule

Parameters

59

×Experience is increased in all rules in [M]

×Accuracy is calculated, e.g. UCS

acc= number of correct classifications

experience

×Fitness is computed as a function of accuracy:

F= (acc)˄

× u˄sed to separate similar fitness classifiers
×Often set to 10 (in problems assuming without noise)

×Pressure to emphasize importance of accuracy

LCS Algorithm Walk-Through:
Update Rule Parameters / Credit Assignment for SL

60

LCS Algorithm Walk-Through:
Credit Assignment for RL

× Recencyweighted update for prediction.

×Widrow-IƻŦŦ ǳǇŘŀǘŜΥ ƭŜŀǊƴƛƴƎ ǊŀǘŜ ʲ
valuenewҐ ǾŀƭǳŜ Ҍ ʲ Ȅ όǎƛƎƴŀƭ - value)

× Filters the 'noise' in the reward signal
ʲ Ґ м ǘƘŜ ƴŜǿ ǾŀƭǳŜ ƛǎ ǎƛƎƴŀƭΣ ʲ Ґ л ǘƘŜƴ ƻƭŘ ǾŀƭǳŜ ƪŜǇǘ

61

LCS Algorithm Walk-Through:
Credit Assignment for RL + Fitness Sharing

×Classifier considered
accurate if:

×Error < tolerance,
otherwise scaled.

×Accuracy relative to
action set

×Fitness based on relative
accuracy, e.g. XCS

()

()

()

[]

()FFF

pR

pRpp

Ax

x

v

-+«

=

í
ì
ë <
=

--+«

-+«

ä
Í

-

'

,'

,
otherwise/

 if1

,

,

0

0

kb

k

k
k

eea

ee
k

ebee

b

62

× Prediction p is updated as follows:

pҥ p + ̡ [r+ mɹaxP(sΩΣaΩύ - p]

where ʴ ƛǎ ǘƘŜ ŘƛǎŎƻǳƴǘ ŦŀŎǘƻǊ

r is reward, ̡ is learning rate

s is state, a is action

× Compare this with Q-learning

Q(s,aύҥvόs,a)+h [r+ Qɹ*(sΩΣaΩύ-Q(s,a)]

where ʰ is learning rate

Action Set [A]

Learning Strategy

Credit Assignment

Classifiera

[A]t-1
Classifiert-1

LCS Algorithm Walk-Through:
Credit Assignment for RL + Deferred Reward

63

× Different niches of the environment usually have different payoff levels -
Phenotypic niche

× Lƴ ŦƛǘƴŜǎǎ ǎƘŀǊƛƴƎ ŎƭŀǎǎƛŦƛŜǊΩǎ ǎǘǊŜƴƎǘƘ ƴƻ ƭƻƴƎŜǊ ŎƻǊǊŜŎǘƭȅ ǇǊŜŘƛŎǘǎ ǇŀȅƻŦŦ - Fitness
sharing prevents takeover

× Fitness sharing does not prevent more renumerativeniches gaining more classifiers -
Niche rule discovery helps

× Rule discovery cannot distinguish an accurate classifier with moderate payoff from
an overly general classifier having the same payoff on average ςOver-generals
proliferate

× No reason for accurate generalizations to evolve

× Unnecessarily specific rules survive

LCS Algorithm Walk-Through:
Why not Strength-based Fitness?

[P]

[M]

Covering

2

3

4

Update Rule

Parameters
7

Data Set1

[C][I]

6

Subsumption

8

LCS: Michigan-Style

Rule-Based Algorithm

Training Instance

64

Prediction

5

INPUT

LCS Algorithm Walk-Through: Subsumption{1 of 2}

×Subsumptionadds an explicit rule
generalization pressure to LCS.

×This mechanism has been applied
at two points in an LCS learning
iteration.

×Among rules in [C] right after its
formation. (Rarely used anymore)

×Following GA rule discovery
offspring rules checked for
subsumptionagainst parent
classifiers and classifiers in [C].

65

× In sparse or noisy environments over-specific rules can take over
population.

Want Ą 10011###1~1

But got Ą 10011#011~1, 100111111~1Σ Χ

× {ǘŀǊǾŀǘƛƻƴ ƻŦ ƎŜƴŜǊŀƭǎΣ ǎƻ ŘŜƭŜǘŜ ǎǇŜŎƛŦƛŎ Ψǎǳō-ŎƻǇƛŜǎΩ

× Need accurate rules first:
× How to set level of accuracy (often not 100%)

× IfǊǳƭŜ ! ƛǎ ŎƻƳǇƭŜǘŜƭȅ ŀŎŎǳǊŀǘŜ όʶ ғ 0ʁ) Then can delete rule B from the
population without loss of performance

× Subsumptionmechanisms:
× GA subsumption

× Action set [A] subsumption

× Subsumption= General rule (A) absorbs a more specific one (B)
× Increases rule numerosity

LCS Algorithm Walk-Through: Subsumption{2 of 2}

66

× Numerosityis a useful concept (trick):

× Reduces memory usage
× Instead of population carrying multiple copies of the same classifier it

just carries one copy.
× Each rule has a numerosityvalue (initialised as 1)

× Protects rule from deletion
× Stabilises rule population

× Numerosityis increased by 1
× When subsumes another rule
× When RD makes a copy

× Numerosityis decreased by 1
× Rule is selected for deletion

LCS Algorithm Walk-Through: Numerosity{1 of 2}

67

×Numerosity(n) affects action selection and update
procedures:

×The fitness sums take numerosityinto account:

×Terminology:
×MacroclassifiersΥ ŀƭƭ ǳƴƛǉǳŜ ŎƭŀǎǎƛŦƛŜǊǎ ƴ җ 1
×Microclassifiers: all individual classifiers (n copies of macroclassifiers)

×Ratio of macroclassifiersto microclassifiersoften used as a
measure of training progress.

×Numerosityis also often applied as a `best-ŀǾŀƛƭŀōƭŜΩ ǎǘǊŀǘŜƎȅ
to ranking rules for manual rule inspection (i.e. knowledge
discovery).

LCS Algorithm Walk-Through: Numerosity{2 of 2}

[P]

[M]

Covering

2

3

4

Update Rule

Parameters
7

Data Set1

[C][I]

6

Subsumption

8

LCS: Michigan-Style

Rule-Based Algorithm

Training Instance

68

Prediction

5

INPUT

×GA rule discovery is activated if
average experience of classifiers in
selection pool is above a user defined
cut-off.

×Classifier experience is the number
of instances that the classifier has
matched.

Genetic

Algorithm
9

LCS Algorithm Walk-Through: Genetic Algorithm

69

× Parent Selection (typically 2 parents selected)

× Selection Pool:
× PanmicticςParents selected from [P] [34]
× Niche ςParents selected from [M], [4]
× Refined Niche ςParents selected from [C] or [A], [9]

× Niche GA (Closest to LCS GA)
× Niching GAs developed for multi modal problems
× Maintain population diversity to promote identification of multiple peaks
× Fitness sharing ςǇǊŜǎǎǳǊŜ ǘƻ ŘŜǘŜǊ ŀƎƎǊŜƎŀǘƛƻƴ ƻŦ ǘƻƻ Ƴŀƴȅ ΨǎƛƳƛƭŀǊΩ ǊǳƭŜǎ

× Selection Strategy:
× Deterministic ςPick rules with best fitness from pool.
× Random ςrarely used
× Probabilistic ς

×Roulette Wheel
× Tournament Selection

LCS Algorithm Walk-Through: Genetic Algorithm ς
Other Considerations

Genetic

Algorithm

[P]

[M]

Covering

2

3

4

Update Rule

Parameters
7

Data Set1

[C][I]

6

Subsumption

8

LCS: Michigan-Style

Rule-Based Algorithm

Training Instance

70

Prediction

5

INPUT

Genetic

Algorithm
9

LCS Algorithm Walk-Through: Deletion

Deletion

10

×LŦ ƴƻ ŘŜƭŜǘƛƻƴΧ

× Population grows without
bound

× Waste memory and takes time
so not often used

×Panmicticdeletion [P]

× Most common technique based
on inverse fitness roulette wheel

× Other factors may come into
ǇƭŀȅΧ

× Rule age

× [A] size parameter

[P]

[M]

Covering

2

3

4

Update Rule

Parameters
7

Data Set1

[C][I]

6

Subsumption

8

LCS: Michigan-Style

Rule-Based Algorithm

Training Instance

71

Prediction

5

INPUT

Genetic

Algorithm
9

LCS Algorithm Walk-Through:Michigan LCS Algorithm

Deletion

10

OUTPUT

[P]

×Entire population is the

solution

×Learns iteratively

×GA operates between

individual rules

×Single rule-set is the

solution

×Learns batch-wise

×GA operates between

rule-sets
72

Michigan vs. Pittsburgh-Style LCSs: Major Variations

